155 research outputs found

    Fast and broadband fiber dispersion measurement with dense wavelength sampling

    No full text
    We report on a method to obtain dispersion measurements from spectral-domain low-coherence interferograms which enables high accuracy (~ps/(nm·km)), broadband measurements and the determination of very dense (up to 20 points/nm over 500 nm) data sets for both dispersion and dispersion slope. The method exploits a novel phase extraction algorithm which allows the phase associated with each sampling point of the interferogram to be calculated and provides for very accurate results as well as a fast measurement capability, enabling close to real time measurements. The important issue of mitigating the measurement errors due to any residual dispersion of optical elements and to environmental fluctuations was also addressed. We performed systematic measurements on standard fibers which illustrate the accuracy and precision of the technique, and we demonstrated its general applicability to challenging problems by measuring a carefully selected set of microstructured fibers: a lead silicate W-type fiber with a flat, near-zero dispersion profile; a hollow core photonic bandgap fiber with strongly wavelength dependent dispersion and dispersion slope; a small core, highly birefringent index guiding microstructured fiber, for which polarization resolved measurements over an exceptionally wide (~1000 nm) wavelength interval were obtained

    Anisotropic super-attenuation of capillary waves on driven glass interfaces

    Full text link
    Metrological AFM measurements are performed on the silica glass interfaces of photonic band-gap fibres and hollow capillaries. The freezing of attenuated out-of-equilibrium capillary waves during the drawing process is shown to result in a reduced surface roughness. The roughness attenuation with respect to the expected thermodynamical limit is determined to vary with the drawing stress following a power law. A striking anisotropic character of the height correlation is observed: glass surfaces thus retain a structural record of the direction of the flow to which the liquid was submitted

    Intensity measurement bend sensors based on periodically tapered soft glass fibers

    No full text
    We demonstrate a novel technique for tapering periodically an all-solid soft glass fiber, consisting of two types of lead silicate glasses, by the use of a focused CO2 laser beam and investigate the bend sensing applications of the periodically-tapered soft glass fiber. Such a soft glass fiber with periodic microtapers could be used to develop promising bend sensors with a sensitivity of -27.75 µW/m-1 by means of measuring the bend-induced change of light intensity. The proposed bend sensor exhibits a very low measurement error of down to ±1%

    Er-doped Oxidized Porous Silicon Waveguides

    Get PDF
    The present work reports Er-doped channel oxidized porous silicon waveguides (OPSWG) formed from n+-type Si by the two-step anodisation process. Er has been introduced into porous silicon before oxidation by a cathodic treatment in 0.1 M Er (NO3)3 aqueous solution. A correlation between Er concentration and refractive index profiles has shown dominant core doping with Er relative to cladding regions. Reported Er concentration of 0.8 at.% in the OPSWG is large enough to attain the amplification effect

    Dual hollow-core anti-resonant fibres

    No full text
    While hollow core-photonic crystal fibres are now a well-established fibre technology, the majority of work on these speciality fibres has been on designs with a single core for optical guidance. In this paper we present the first dual hollow-core anti-resonant fibres (DHC-ARFs). The fibres have high structural uniformity and low loss (minimum loss of 0.5 dB/m in the low loss guidance window) and demonstrate regimes of both inter-core coupling and zero coupling, dependent on the wavelength of operation, input polarisation, core separation and bend radius. In a DHC-ARF with a core separation of 4.3 µm, we find that with an optimised input polarisation up to 65% of the light guided in the launch core can be coupled into the second core, opening up applications in power delivery, gas sensing and quantum optics

    A multi-core fiber to single-mode fiber side-polished coupler

    No full text
    Evanescent coupling between a side-polished multi-core fiber and a single-mode fiber is demonstrated for the first time. The low-loss tap coupler is capable of isolating the output from a single core of a 7-core fiber

    Nondestructive measurement of the roughness of the inner surface of hollow core-photonic bandgap fibers

    No full text
    We present optical and atomic force microscopy measurements of the roughness of the core wall surface within a hollow core photonic bandgap fiber (HC-PBGF) over the [3×10-2 µm-1 to 30 µm-1] spatial frequency range. A recently developed immersion optical profilometry technique with picometer-scale sensitivity was used to measure the roughness of air-glass surfaces inside the fiber at unprecedentedly low spatial frequencies, which are known to have the highest impact on HC-PBGF scattering loss and, thus, determine their loss limit. Optical access to the inner surface of the core was obtained by the selective filling of the cladding holes with index matching liquid using techniques borrowed from micro-fluidics. Both measurement techniques reveal ultralow roughness levels exhibiting a 1/f spectral power density dependency characteristic of frozen surface capillary waves over a broad spatial frequency range. However, a deviation from this behavior at low spatial frequencies was observed for the first time, to the best of our knowledge

    Modal content in hypocycloid Kagomé hollow core photonic crystal fibers

    No full text
    The modal content of 7 and 19 cell Kagomé anti resonant hollow core fibers (K-ARF) with hypocycloid core surrounds is experimentally investigated through the spectral and spatial (S2) imaging technique. It is observed that the 7 and 19 cell K-ARF reported here, support 4 and 7 LP mode groups respectively, however the observation that K-ARF support few mode groups is likely to be ubiquitous to 7 and 19 cell K-ARFs. The transmission loss of the higher order modes (HOMs) was measured via S2 and a cutback method. In the 7 cell K-ARF it is found that the LP11 and LP21 modes have approximately 3.6 and 5.7 times the loss of the fundamental mode (FM), respectively. In the 19 cell it is found that the LP11 mode has approximately 2.57 times the loss of the FM, while the LP02 mode has approximately 2.62 times the loss of the FM. Additionally, bend loss in these fibers is studied for the first time using S2 to reveal the effect of bend on modal content. Our measurements demonstrate that K-ARFs support a few mode groups and indicate that the differential loss of the HOMs is not substantially higher than that of the FM, and that bending the fiber does not induce significant inter modal coupling. A study of three different input beam coupling configurations demonstrates increased HOM excitation at output and a non-Gaussian profile of the output beam if poor mode field matching is achieved

    Low loss kagome fiber in the 1µm wavelength region

    No full text
    We present a Kagome hollow core fiber with record low loss (12.3dB/km at 1010nm), a wide 3dB bandwidth (150nm), low bend sensitivity and large mode field diameter (~30µm), tailored for high power delivery applications
    corecore